dự đoán số đề hôm nay(www.84vng.com):dự đoán số đề hôm nay(www.84vng.com) cổng Chơi tài xỉu uy tín nhất việt nam。dự đoán số đề hôm nay(www.84vng.com)game tài Xỉu dự đoán số đề hôm nay online công bằng nhất,dự đoán số đề hôm nay(www.84vng.com)cổng game không thể dự đoán can thiệp,mở thưởng bằng blockchain ,đảm bảo kết quả công bằng.
数年过去了,虽然自动驾驶技术早已有了不小的提升,但“商业化落地难”的大坑,依旧难以逾越。也正是因为这一根本性问题的存在,Argo AI 率先倒在了寒冬来袭之时。
自动驾驶的寒风从Robotaxi吹到了激光雷达。
一周前,全球首家激光雷达上市公司Velodyne宣布与另一激光雷达初创Ouster合并,行业为之震撼。
Ouster的创始人出自另一知名激光雷达公司Quanergy,是一家试图以“固态”激光雷达颠覆行业的初创。而Velodyne则是行业曾经当之无愧的霸主,其生产的“大花盆”(机械式激光雷达)几乎是行业的图腾。
但寒冬之下,地主家也没有余粮。两家公司称,投资人对自动驾驶的热情正在消减,必须抱团降本增效。双方合并后,将手握3.55亿现金, 市值约4亿美金,在此之前两家公司的股价已经跌去超过80%。据称该合并的实际情况是Ouster低价并购Velodyne。
相比之下,国内激光公司虽然都还处于赔本赚吆喝的阶段,但因为有融资在撑着,日子也算过得滋润,以速腾、禾赛和图达通为代表的企业都已经绑定了小鹏、理想、蔚来这样的大客户,各种技术路线也在百花齐放,鹿死谁手,尚未可知。
那么,曾经制霸行业的Velodyne是怎么沦落到要被并购的?其他公 司又能够绕开Velodyne的坑成功上位吗?激光雷达行业最大隐忧又是什么?
1、自动驾驶寒冬年
破产裁员,明星公司CEO被免职
从Mobileye上市时21美元/股的发行价来看,估值170亿美元的Mobileye,比2017年被收购时仅溢价17亿美元,相较于英特尔此前喊出的500亿美元估值可谓“血亏”。
图源:英特尔官网
抛开Mobileye骨折上市不说,如果暂且也将这定义为今年自动驾驶行业的一件喜事,那可能这也是今年这一行业内为数不多的喜事。
几乎是在Mobileye上市的同一天,由德国大众和美国福特汽车这两大巨头共同参股支持的自动驾驶创业公司Argo AI,宣布了倒闭的消息。而倒闭的原因,更多的源自于公司商业化落地困难。
此外,由于受到美国海外投资委员会的调查(CIFUS),同时在中、美开展技术以及商业成果落地的自动驾驶第一股“图森未来”,也传出了董事长兼 CEO侯晓迪被罢免的消息。与此同时,自动驾驶独角兽小马智行裁员50%的闹剧也开始上演……
接连不断的“事故”,让国内自动驾驶领域的市场情绪降至了冰点。“无人驾驶无人生还,2022年可谓是自动驾驶行业的寒冬年。”从业者们纷纷感慨。
一连串的问题,折射出的是资本对于自动驾驶行业的优待正在减弱,在经过了早期的技术探索与场景探索之后,自动驾驶行业的发展路径逐渐清晰,投资人们的热情开始减弱,思考问题的方式开始变得冷静。
当市场的寒气传递至更上游的芯片领域,身处其中的自动驾驶芯片企业们,也感受到了凉意。
“投资人对这一行业的关注度正在减弱,企业融资也变得困难了。”某国自动驾驶芯片企业市场人员李超对半导体观察网表示。而在另一侧,刚从国内自动驾驶芯片头部企业地平线科技离职的员工进一步透露称,“公司近期刚经历了一轮降本增效,且力度不小”。
要知道,今年9月份的时候,地平线科技刚宣布完成新一轮融资,而对于融资的理由 ,内部人士看来这更多的是为了续命。
不过,虽然来自于纯自动驾驶企业的市场需求预期走弱,但身处整个自动驾驶行业产业链的上游,通过寻求与有着智能化转型需求的传统车企和tire1厂商合作,与客户深度绑定实现更多的“前装量产”,也正在成为当下国内自动驾驶芯片企业们的另外一种新活法。
尤其在全球汽车芯片奇缺的当下,这看似正在演变成为眼下自动驾驶芯片厂商们打开市场的另一条绝佳路径。
2、王座无人
过去几年中,车载激光雷达的主要市场从Robotaxi向乘用车迁徙,形态从机械旋转式转向固态/半固态。以机械激光雷达起家的Velodyne,未能顺利完成这场高难度的技术与产品重构。
但那些将Velodyne赶下王座的挑战者们同样如履薄冰。因为整个行业的技术路线多样,且快速发展、切换,尝试构筑壁垒的技术豪赌,很可能会变成一场输光底裤的梭哈。
这种不确定性具体表现为,在激光雷达的各项关键技术中——从测距模式,到激光发射、扫描、接收模块,几乎每一项都没有收敛出一个最优解,而是有多条各有优劣的道路供企业选(du)择(bo)。
由此,行业中出现了百花齐放的场景:行业中有数十家公司,而几乎每家公司都通过技术排列组合,拿出不同于别家的方案。
典型的例子是,激光雷达“国产三杰”禾赛、速腾、图达通的首款乘用车激光雷达AT128、M1、猎鹰虽然前后脚上车,但技术查重率很低。
其中速腾M1偏向使用更成熟的零部件,已多次迭代提高部件集成度,理论成本低,适合扮演价格屠夫。
,环球ug平台卖分(www.ugbet.us)开放环球UG代理登录网址、会员登录网址、环球UG会员注册、环球UG代理开户申请、环球UG电脑客户端、环球UG手机版下载等业务。
禾赛AT128在光源上启用了新的VCSEL阵列,追求零部件的半导体化,尽量减少运动部件,有利于产品可靠性。
图达通猎鹰则讲求大力出奇迹,用更大的体积、功率(以及更贵的零部件)换取更高的性能,看得更远,分辨率更高。
在数十乃至上百万台激光雷达交付验证前,没人知道哪家的方案会胜出,或者三者会划分出市场的三个档次,抑或其他公司携突破性技术将他们扫进故纸堆——火热的激光雷达从光学、光通信、半导体延揽了大量人才,这不是一个缺少新技术的行业。
对激光雷达企业来说,更确切的答案是尽快以足够低的成本登陆更多的智能电动汽车,并保证这种精密光学设备在复杂车辆环境上的可靠性,尽可能让自己的方案成为事实上的行业标准。
因此,跑在前列的激光雷达企业聚焦于两个关键词:工程化与制造。
禾赛科技CEO李一帆在接受《九章智驾》访谈时称, 禾赛负责工程化的CTO向少卿统管上千人,而他与首席科学家各管百来人。去年5月,禾赛投开始自建“麦克斯韦”激光雷达超级工厂。
无独有偶,速腾聚创上周也与立讯精密成立合资制造公司“立腾创新”——两者试图带头将无休止的技术竞赛拉回精密制造的量产比拼。
即便如此,激光雷达短期内仍然是一门烧钱的生意。禾赛麦克斯韦超级工厂投资2亿美元,规划年产能百万台。今年9月29日,禾赛才宣布车规激光雷达的月交付量刚刚突破一万台——这已经是速度最快的头部玩家。
而在2天后,特斯拉一年一度的AI Day召开,马斯克把寒气传递给了每一家激光雷达公司。
3、最大敌人 并非同行
激光雷达公司们最大的敌人不是同业的竞争对手,而是摄像头,更准确地说,是那些研发纯视觉自动驾驶的公司,特斯拉是这一阵营的话事人。
在过去几年中,马斯克多次Diss激光雷达,认为后者是自动驾驶的“拐杖”,任何依靠激光雷达的人都会失败。但一直以来,大多数从业者对激光雷达的态度都是“你喷你的,我用我的”。这是因为,不要激光雷达的纯视觉自动驾驶高度依赖深度学习,在环境感知上一度存在重大缺陷:
一方面,摄像头本身并非全天候传感器,雨雪雾天与夜间难以正常工作;另一方面,在此前的视觉算法框架中,被摄像头拍到的物体必须被识别,才能被系统认为存在。这导致纯视觉自动驾驶在应对没训练过的障碍物、静止物体时表现极不稳定,常常漏检、误检。
而激光雷达无需经过训练,也能通过准确的测距探测到障碍物,为自动驾驶提供保障。
因此,智能驾驶行业此前的主流看法是,应该搭建多传感器融合的感知系统,让摄像头与激光雷达优势互补。然而,激光雷达的硬件优势正在被特斯拉通过软件算法的优势渐渐拉平。
在今年AI Day上,特斯拉详尽介绍了占用网络(Occuppancy Network),这一算法能够基于二维图像,高精度高实时性地还原三维世界,不仅能感知物体的体积,也能判别其动静状态。这与激光雷达的能力实质上没有什么不同。
如果摄像头能够成为激光雷达的平替,后者的生存空间将岌岌可危。
理想今年在大力加码基于视觉感知的智能驾驶。而在占用网络公开后,理想更是率先长他人志气——CEO李想在微博上称,激光雷达的本质就是占用网络。据说小鹏智能驾驶负责人吴新宙也私下告知激光雷达厂商,要准备转型。
不过,行业中并不全是特斯拉的追随者。到今年年中,速腾聚创拿下了超过40个激光雷达车型定点,禾赛也声称,来自主机厂的前装定点有数百万台之多。更多的车企则在观望:激光雷达用不用,取决于它够不够便宜,性能够不够稳定。
在此之前,车规级激光雷达的价格已经从上万元,被压缩到了3000余元,但相比于几百元一枚的高清摄像头,激光雷达的身价仍然让绝大多数车型难堪重负。将价格再降一个数量级,是车企们对激光雷达的殷切希望,也是大规模装车的前提条件。
一场摄像头与激光雷达相互偷家的暗战实际上已经打响。
激光雷达的战略目标是降本,按照李一帆的展望,激光雷达最终的价格将是摄像头的2-3倍[4];而摄像头的战略目标则是提效,让视觉算法精度、置信度更高,尽可能逼近激光雷达。
当下,两者共存的声音仍是主流,但在这场竞速赛中,作为新兴传感器的激光雷达面对着更大的隐忧——历史上决定一项新技术兴衰的首要因素常常不是其理论性能的先进性,而是对既有技术、设施的调用能力,翻译一下就是,生态。
比之激光雷达,摄像头的生态完善而庞大。
基于图像的计算机视觉向来是AI显学,传感器(摄像头)的保有量最大,数据量最多,人才最为密集。这种优势直接继承到了智能驾驶领域,眼下绝大多数智能驾驶功能,都是由摄像头+视觉算法完成,或者至少以摄像头为主。这带来的是完整的数据闭环,以及视觉算法极高的进化速度。
相较之下,激光雷达的生态建设尚在初级阶段,数据与人才更少,算法也更加稚嫩。甚至于,因为人眼熟悉的是图像而非点云,造成激光雷达的数据标注效率要比图像更低,要价更高:一幅图像的标注通常耗时数十秒、开价几毛钱,而一幅激光雷达点云的典型标注成本则是数分钟、十元起[5]。
这些差异的根源可能要追溯到文明形成甚至人类的远古祖先进化出眼睛。
特斯拉前AI总监Andrej 近日在一场播客中称,人类打造的人工世界,是从便于人眼感知的角度出发而建,视觉传感器天然地会因此居于核心地位。想明白了这一点的特斯拉,每年都在突破视觉智能驾驶的天花板,就在三天之前,特斯拉开始在北美推送FSD V11。
这意味着激光雷达要打一场不对等的战争。面对快速进化的对手,激光雷达如果要在自动驾驶中争得一席之地,需要跑得更快,与下游的合作更加紧密,尽快突破“成本、性能和稳定性”的不可能三角。
来源:半导体观察网,汽车公社,远川研究所
,Allbet开户(www.aLLbet8.vip)是欧博集团的官方网站。欧博官网开放Allbet注册、Allbe代理、Allbet电脑客户端、Allbet手机版下载等业务。
网友评论
1条评论皇冠网址(www.huangguan.us)
回复1、 老家承包的土地,投资建设的乡村旅游,是不是不合适?是不合适这行业还是不适合在老家发展?看来挺好的